
Kotlin Basics

Download IntelliJ IDEA from here (if the link is invalid just type “IntelliJ
download” in google):
https://www.jetbrains.com/idea/download/
(Choose Community)

We will use Android Studio Kotlin REPL (Read Evaluate Print-loop) [tools ->
Kotlin -> REPL]
Problem with opening REPL Run > Edit Configurations... > Templates > Java
Scratch > Shorten command line to @argfile (Java 9+) and restart Android
Studio.

var - variables
val - finals
val always preferred

No need for semicolon
Kotlin is type inferred and type safety
Meaning this won’t work:
var x = 7
 x = 7.4

Kotlin has no primitives only objects (Int, Float, String)

consts are compile time constants. Meaning that their value has to be assigned
during compile time, unlike vals, where it can be done at runtime. This means,
that consts can never be assigned to a function or any class constructor, and
only to a String or primitive.

const val WEBSITE_NAME = "Baeldung"
the Kotlin compiler inlines the const val values into the locations where
they’re used

If you try to type it in the REPL you will get the following error: “const 'val' are
only allowed on top level or in objects”, like this for example:

const val VALUE: String = "constant"

fun main() {
 println("$VALUE is inlined")
}

At first glance, we might think that the Kotlin compiler gets a static field value
from a class and then concatenates it with the ” is inlined” text. However,
since const vals are inlined, the compiler will copy the “constant” literal
wherever the VALUE constant is used. This is why they must get a value in
compile time. This constant inlining is much more efficient than getting a
static value from a class.

Kotlin Nullability
In an effort to rid the world of NullPointerException, regular variable types in
Kotlin don't allow the assignment of null. If you need a variable that can be null,
declare it as nullable by adding ? at the end of its type - String?, Int?.

In Kotlin, the type system distinguishes between references that can hold null
(nullable references) and those that can not (non-null references). Regular
objects cannot be null (String, Int…) - prevent null pointer exception

The main advantage is that If we check a property of null objects we get a
compile time and not runtime error
To bypass the compile time check use !! - but be careful from
KotlinNullPointerException

If we are not sure we use - safe call - use ?. - str?.length - > will return null and
not crash

When inferring types, the compiler assumes non-null for variables that are
initialized with a value.
var inferredNonNull = "The compiler assumes non-null"
If we assign null on initialization the ? Type will be auto inferred

class Nothing - Nothing has no instances. You can use Nothing to represent "a
value that never exists": for example, if a function has the return type of
Nothing, it means that it never returns (always throws an exception).

There are a few techniques for using or accessing the nullable variable. One of
them is safe call ?. and another one is null check !! but before figuring out the
difference among both, let’s understand what they are in detail first:

?. - safe call
The best way to access nullable property is safe call operator ?.
This calls the method if the property is not null or returns null if that property is
null without throwing an NPE (null pointer exception).
Safe calls are useful in chains. For example, if Bob, an Employee, may be
assigned to a Department (or not), that in turn may have another Employee as a
department head, then to obtain the name of Bob’s department head (if any),
we write the following
bob?.department?.head?.name
Such a chain returns null if any of the properties in it is null.
Since the return value is null we can combine this operator with let function we
will see later on

The !! Operator
This operator is used to explicitly tell the compiler that the property is not null
and if it’s null, please throw a null pointer exception (NPE). If you are sure that
the property value is not null use ?. instead of !!. Usually we use this when
passing a must non null value to a function. But again be careful while using it.

Elvis Operator (?:)
This one is similar to safe calls except the fact that it can return a non-null
value if the calling property is null
The Elvis operator will evaluate the left expression and will return it if it’s not
null or else will evaluate the right side expression. Please note that the right
side expression will only be evaluated if the left side expression is null.
Elvis is usually used to give default values in case of null:

val str : String? = null
val strLength = str?.length ?: -1 - > strLength equals to -1

We can always preform an explicit null check if(x != null) x.do()
In this case if x is val or local property he will be smart casted to non-nullable
and all is safe. But if it is a var class property the compiler won’t smart cast him
and if you do it by force you will get the following error: “smart cast to ‘[’non
null type] is impossible, because ‘[‘variable name] is a mutable property that
could have been changed by this time” - try to always use vals

If and when
if syntax like Java but each block can return it’s last line - if is not a statement
but an expression!

Branches of if can be blocks. In this case, the last expression is the value of a
block
'if' must have both main and 'else' branches if used as an expression
println - prints on screen
Unit - Kotlin’s void

In Kotlin, if is an expression: it returns a value. Therefore, there is no ternary
operator (condition ? then : else) because ordinary if works fine in this role:

when expression
Similar to switch but No need for case just write the value and -> if it is more
then one line use blocks
Use in or !in for ranges - Kotlin lets you easily create ranges of values using the
rangeTo() function from the kotlin.ranges package and its operator form ..
Usually, rangeTo() is complemented by in or !in functions.
https://kotlinlang.org/docs/operator-overloading.html#equality-and-inequality-
operators

No need for break - won’t got into the next case even without break
Instead of default use else
You can even call functions or operators in the cases
Same as if it can return values

You can use when without the variable name
And not even on the same variable! It is just a collection of boolean conditions
You can use {} inside when for multiple code lines

The advantage is that if one is true then the rest won’t be checked - think when
you want to start the app in condition that all permission granted and all

features enabled and so on, with when you can check all of them in a single
block of code

Arrays
val array = arraOf(….) -> array of objects Kotlin uses Array<Int>
val array: Array<Long> = arrayOf(1,2,3)
joinToString() - > returns string representation of the array (toString just return
the instance address).
val result = arrayOf(1,4,6,8,9)
result.joinToString()
res54: kotlin.String = 1, 4, 6, 8, 9
array[0]
Kotlin provides a selection of classes that become primitive arrays when
compiled down to JVM byte-code.
You can create an array of java primitives with intArrayOf, charArrayOf….
You can sometimes find them in the Android API:

Kotlin.collections
List\MutableList(the regular List of java)
val list = listOf(…)
val mutList = mutableListOf(6,8,7)
mutList.add(7)
list[0] = 90 - > error when its not a mutable list
Please note the Kotlin’s list not only can’t change it’s size but also it’s content

val set = setOf(6,6) only one will stay

val map = mapOf(Pair(1,”Moshe))
To add to the collections use the Mutable(mutable list, set, map…)
map’s put function returns the overridden value
Instead of Pair your can use to infix function — more on infix very soon - but in
short there is to infix extension function to most of the classes that accept
another argument and return a pair with both of them and replaces the dot
notation

●

●

For retrieving a value from a map, you must provide its key as an argument of
the get() function. The shorthand [key] syntax is also supported. If the given
key is not found, it returns null. There is also the function getValue() throws an
exception if the key is not found in the map - if we must pass a non null
reference. Additionally, you have two more options to handle the key absence:

getOrDefault() returns the specified default value if the key is not
found.
getOrElse() the values for non-existent keys are returned from the
given lambda function (more on lambda in the next chapter).

Loops

downTo - inline function for descending order
step - for creating spaces

Once int become Int we get these infix functions and much more
while, do-while - same as Java

Functions
fun - keyword for function declaration

fun [name](params) : [return value]

If no return type is specified then Unit (Java’s void) is omitted - unless it is a
single line function and the return value is inferred

If the function is only one line no need for {} just use =

And in that case the return type can be inferred!

varag - for unknown number of params

Move to IntelliJ IDEA create a new project, make sure your JDK is defined and in
it create a new Kotlin file.

Kotlin enables top class variables and functions - no need for class to
write functions
Kotlin also allows us to define inner functions - function nested inside other
functions

fun main(args:Array<String>) {} [you can shorten by writing main followed by
enter]
Print your first Hello World in Kotlin!!!

note: In Kotlin versions earlier than 1.3, the main function must have a
parameter of type Array<String>.

●

●

●

Create infix functions
Functions marked with the infix keyword can also be called using the infix
notation (omitting the dot and the parentheses for the call). Infix functions must
meet the following requirements:

They must be member functions or extension functions - they must
have this.
They must have a single parameter.
The parameter must not accept variable number of arguments
(varargs) and must have no default value.

Example(an Int extenssion function that concatenating a string to himself a
given times

Usage:

Infix notation also works on members functions (methods):

Please note: We will discuss classes later but for now notice that there is no
new in Kotlin just the class name followed by it’s constructor call.

Look at the smart cast we have seen before in IntelliJ and functions.
Sometimes Kotlin programs need to work with null values, such as when
interacting with external Java code or representing a truly absent state. Kotlin
provides null tracking to elegantly deal with such situations - in the following
example maybeString is smart casted to String

Default arguments
Function parameters can have default values, which are used when you want to
skip the corresponding argument. This significantly reduces the number of
overloads and saves us ALLOT of code.

A default value is defined using = after the type.

Think about how many lines of code you just saved (please note that ByteArray
is java array of bytes - it is not Array<Byte>)

If a default parameter precedes a parameter with no default value, the default
value can only be used by calling the function with named arguments:

1.

We usually put the parameters with default values after parameter with no
default values(no save for the need of using parameters names)

Please note that with default values we still have to write the type. The main
reason is compilation performance. When we look at a method call, it helps a
lot to have explicit parameter types which don’t need to be inferred. Inferring
the parameter type from a string constant is trivial, but if you have fun foo(a =
bar()) and bar() also has an inferred return type, understanding the actual
parameter type of a becomes very expensive.

Drills
Ask the user for his name and his age and print out if he is old enough
to drive (please use the [String].toInt() function but be aware that it
works on String and not String? - what that the redaLine() returns)

Spoilers:
readLine() returns String?
toInt() can be applied only to String
You must use ? Or !!
While ? Can return null you can’t use it in a boolean expression (can’t compare
null)
So the only option is to use !! but be sure to check before using
If you check before then you don’t need !! Kotlin will automatically smart cast
your object to String before applying the toInt() function

Solution:

2.

3.
●

●

●

●

●

Create a concat function that receives a list of strings and a separator
and return one string containing the strings separated with the
separator. If no separator supplied use comma. invoke her twice, once
with the default separator and one with you own.

Solution:

2 - Bonus - do you think you can supply both parameter but in a different order
without changing the function title?

Solution(use parameters names):
val result1 = concat(separator = "-",list = listOf("eran","moshe","dave"))

Function syntax - Create the following functions:
A simple function that takes a parameter of type String and returns
Unit.
A function that takes two strings message and a prefix. the second
parameter is optional with default value “Info”. The function will not
return anything but this time use omitted Unit return value and print to
the screen the prefix followed by the message.
A function that receives two integers and returns their sum.
A single-expression function that returns an integer (inferred) - the
function will receives two Int and returns their multiplication.
A function that takes String varargs and prints them

●

●

Infix function called “onto” that works on two strings (this and the
parameter and return a new Pair containing both of them) - Pairs can
be add to maps like we have seen before. use your infix function with
map initialization.
Create the main function and test all your functions

Solutions:

For more reasons adding on basic functions syntax
https://kotlinlang.org/docs/functions.html

Exceptions
Kotlin solves a very common problem with try-catch block and variable scopes:
In java we sometimes have to define a variable outside the try block and
initialize it to null, we can’t define it inside the try block because of the scope -
if we define him in the try block then it wouldn’t exist outside of it.

Kotlin solve this by with a try - catch block that is also an expression and thus
return a value, the last line in the block is the retuned value :

Please note the we can throw IOException without surrounding it with try catch
block or declare it in the method constructor!

This is not possible in Java cause IOException is a checked exception but in
Kotlin There are no checked exceptions!! like C# and Ruby All is un-checked
exceptions meaning it’s your responsibility!
Thats why the keyword throws does not exists in Kotlin

Be responsible! Kotlin is more interested in saving us lines of code then in being
our Mom and Dad :)

